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Abstract. In this paper we discuss the application of conditional symmetries for obtaining
exact and approximate solutions of the equationutt = (uux)x . We propose to use the invariance
properties of the infinitesimal conditional symmetries with respect to the classical Lie symmetries
in order to explicitly solve the determining equations for the conditional symmetries. Exact
solutions invariant under the conditional symmetries are given by explicit formulae, approximate
solutions are calculated and presented in the graphical form by using ‘Mathematica’.

1. Introduction

To date, significant progress in application of symmetries to analysis of nonlinear differential
equations can be observed. The classical Lie symmetries of PDEs allow us to find explicit
solutions, conservation laws, linearizing substitutions of the Hopf–Cole type, etc [1–5].
Unfortunately, for a lot of important applications differential equations the classical Lie
symmetry groups are rather trivial including at most space and time translations and scale
transformations. This stimulates the efforts devoted to generalization of Lie’s original
concept of symmetry [11]. Nonclassical conditional symmetries considered in this article
are the classical symmetries of the new system of PDEs obtained by adding differential
constraints, sometimes called ‘side-conditions’, the original system of PDEs. Conditional
symmetries are associated with to Bäcklund transformations, functionally invariant solutions,
and the ‘direct’ methods for explicit solution of PDEs [6].

The first approach to these symmetries was made by Bluman and Cole [7]. It consists
in augmenting the original PDE with invariant surface conditions, a system of first order
differential equations satisfied by all functions invariant under a certain vector field. The
latter is chosen as a classical infinitesimal symmetry for the augmented system. The basic
equations for conditional symmetries are similar to Lie’s determining equations except that
their number is less. That is why one rarely succeeds in obtaining all possible solutions
to the determining equations for conditional symmetries, especially in the case of second
order equations. As a rule, only particular solutions can be found, although many efforts are
devoted to solving this problem by using differential Gröbner bases [8] and triangularization
algorithms [9].

We must mention here an interesting problem of interplaying the classical and
conditional symmetries. In fact, the determining equations for the conditional symmetries
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inherit the classical symmetries of the original PDEs [10] allowing one to use the classical
symmetries for systematic solution of nonclassical determining equations. In this paper, we
use this approach for the nonlinear wave equationutt = (uux)x .

Obtaining the classical and nonclassical symmetries of differential equations follows
the algorithm involving prolongation of vector fields, restriction of functions and vector
fields to submanifolds, reduction of overdetermined systems to passive forms and so on.
Unfortunately, all these steps require simple but sometimes enormously large calculations.
It is not surprising that designing symmetry symbolic packages has drawn considerable
attention [13, 14]. We use a ‘Mathematica’ program called SYMMAN [15]. It provides a
wide spectrum of symbolic symmetry calculations such as obtaining determining equations
for classical and nonclassical symmetries and graphical representation of invariant solutions.

2. Physical phenomena described by the nonlinear wave equationutt = (uux)x

The equation considered belongs to the family of nonlinear wave equations

utt = (k(u)ux)x (1)

used by several authors for analysing nonlinear phenomena in continuous media. Zabusky
[16] proposed the equation

vtt = k(vx)vxx (2)

for describing the dynamics of a nonlinear string. equation (2) can be transformed to (1)
by differentiation w.r.t. the variablex followed by a substitutionvx = u.

Consider the equations of one-dimensional gas dynamics

ρt + (ρv)x = 0 vt + vvx + ρ−1px = 0 p = p(ρ). (3)

If we introdice the stream functionψ(t, x) by the relations

ρ = ψx − ρv = ψt

and take the variablest andψ as our new independent coordinates, we obtain equation (1)
for the functionu = ρ−1:

utt = ∂

∂ψ

(
−dp

du
uψ

)
.

Longitudinal wave propagation on a moving threadline under the assumption that the
transverse vibrations are small is described by the system of equations

Vt + VVx = λ

ρ0
σx λt + V λx − λVx = 0 σ = E0r(λ) (4)

proposed in [17]. System (4) can be reduced to the equation

λtt = µ2
(
r ′(λ)λψ

)
ψ

(5)

with µ2 = E0/ρ0. Finally, the equations of an electromagnetic transmission line

it + L−1vx = 0 vt + C−1ix = 0 C = C(v)

can be transformed to the equation

vxx = (LC(v)vt )t (6)

for the voltage functionv(t, x). In the cases when the functionr(λ) is quadratic or the
functionC(v) is linear, equations (5) and (6) take the form

utt = (uux)x. (7)

This equation is the subject of the present article.
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3. Determining equations for the infinitesimal conditional symmetries

Equation (7) admits four-dimensional Lie algebrag of its infinitesimal Lie symmetries [17]
with a basis:

X1 = ∂t X2 = ∂x X3 = t∂t + x∂x X4 = t∂t − 2u∂u. (8)

The corresponding one-parameter groups are time and space translations and scale
transformations.

To discuss the conditional symmetries, we will treat equation (7) from a geometric point
of view as a hypersurfaceE in the spaceJ 2 of 2-jets of local functionsf (t, x) defined on
the spaceR2 of independent variablest , x [2]. Let

v = τ(t, x, u)∂t + ξ(t, x, u)∂x + φ(t, x, u)∂u (9)

be a vector field on the spaceR2 × R1 with coordinatest , x, andu. Then all functions
invariant underv and only such functions satisfy a first order differential equation

τut + ξux = φ (10)

called the invariant surface conditionEv.
Denote byE(1)v ⊂ J 2 the first prolongation ofEv. The systemE(1)v consists of (10) and

the equations obtained byt- andx-differentiation of (10). Denote also byv(2) the second
prolongation ofv to the spaceJ 2.

Definition. A vector fieldv such thatτ 2 + ξ2 6≡ 0 is called an infinitesimal conditional
symmetry of equation (7) ifv(2) is tangent to the intersectionE ∩ E(1)v .

The infinitesimal criterion of the tangency takes the form

v(2)(utt − (uux)x)|E∩E(1)v
= 0. (11)

Relation (11) is a generalization of the tangency condition for the classical Lie symmetries.
It yields the determining equations for the coefficientsτ , ξ , φ of the vector fieldv.

It is well known that a vector field of conditional symmetries can be normalized by
dividing it by any of its nonvanishing coefficients. So vector fields of the conditional
symmetries can be split into two classes:

(1) vector fields withτ 6≡ 0 and, consequently, withτ = 1,
(2) vector fields withτ ≡ 0, ξ 6≡ 0 and, consequently, withτ = 0, ξ = 1.
We begin by considering the vector fields of the first class:

v = ∂t + ξ(t, x, u)∂x + φ(t, x, u)∂u. (12)

For vector fields (12) it is possible to eliminate the derivativesut , utt , utx , anduxx from
(11) by solving the systemE ∩ E(1)v with respect to these derivatives and by substituting
the expressions obtained into (11). After elimination, equation (11) becomes a third-order
polynomial in the derivativeux . Setting the coefficients of the polynomial equal to zero
yields the determining equations for the functionsξ and φ. The program SYMMAN
calculates the coefficients of the prolongationv(2) of the vector field (12) onto the manifold
J 2 supplied with the coordinatest, x, u, ut , ux, utt , utx, uxx following the well known
formulae [1–3]. Then it calculates the application ofv(2) to the functionutt − u2

x − uuxx ,
solves the systemE ∩E(1)v w.r.t. the derivativesut , utt , utx , anduxx , substitutes them into
the expressionv(2)(utt − (uux)x), takes the coefficients of the powers ofux in the obtained
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expression and equates these coefficients to zero, which results in the following system of
four determining equations:

φ2φu − 2φ2ξφuξu − uφ2φuu + φ2ξ2φuu − φξφx + 2uφξuφx − 2uφφuξx + 2uξφxξx

+ u2φxx − uξ2φxx + φφt − 2φξξuφt − 2uξxφt − 2φξφuξt + 2uφxξt

− 2ξφtξt − 2uφφtu+ 2φξ2φtu − uφtt + ξ2φtt = 0

− 2φξφu − φ2ξu + 4φξ2φuξu + 2φ2ξξ2
u + 2uφξφuu − 2φξ3φuu + uφ2ξuu − φ2ξ2ξuu

+ 2uφx − 2ξ2φx + φξξx + 4uξφuξx − 2uξξ2
x + 2u2φxu − 2uξ2φxu

− u2ξxx + uξ2ξxx − 2uξuφt + 2ξ2ξuφt − φξt + 2uφuξt + 2ξ2φuξt

+ 4φξξuξt + 2ξξ2
t + 2uξφtu − 2ξ3φtu + 2uφξtu − 2φξ2ξtu

+ uξtt − ξ2ξtt = 0

− φ + uφu − ξ2φu + 4φξξu + 2uξφuξu − 2ξ3φuξu − 4φξ2ξ2
u + u2φuu − 2uξ2φuu

+ ξ4φuu − 2uφξξuu + 2φξ3ξuu + 2ξ2ξx − 4uξξuξx − 2u2ξxu

+ 2uξ2ξxu + 2ξξt − 4ξ2ξuξt − 2uξξtu + 2ξ3ξtu = 0

uξu − ξ2ξu − 2uξξ2
u + 2ξ3ξ2

u − u2ξuu + 2uξ2ξuu − ξ4ξuu = 0.

(13)

For the vector fields of the second class

v = ∂x + φ(t, x, u)∂u (14)

the determining equations

φuu = 0 φtu = 0 φtt − uφxx − 2uφφxu − 3φφx − 2φ2φu = 0

imply that

φ(t, x, u) = a(x)u+ b(t, x) (15)

where the functionsa(x) andb(t, x) satisfy the overdetermined system:

btt − 3bbx − 2ab2 = 0 bxx + 3abx + 5a′b + 4a2b = 0

a′′ + 5aa′ + 2a3 = 0.
(16)

The next two sections deal with solving systems (13) and (16).

4. Infinitesimal conditional symmetries of second type

The first two equations of (16) imply the compatibility condition

14ab2
x + 46a′bbx + 36a2bbx − 37ab2a′ − 18a3b2 = 0 (17)

obtained by cross-differentiation. The second equation of (16) is a differential consequence
of (17) provided the equation

(60a′ − 48a2)b2
x − (510aba′ + 348a3b)bx − 267b2a′2 − 233a2b2a′ − 70a4b2 = 0 (18)

is satisfied. After elimination ofbx from (17) and (18) we come to the equation

b3(2a2 + a′)(302 707a6 + 1616 526a4a′ + 2869 917a2a′2) = 0. (19)

If we take the third factor in (19) and the equation for the functiona(x) in (16), then that
overdetermined system for the functiona(x) admits the unique solutiona(x) = 0. Hence,
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in this caseb(t, x) = c1(t)x + c2(t), where the functionsc1(t) andc2(t) satisfy the system
of ODE:

c̈1 − 3c2
1 = 0 c̈2 − 3c1c2 = 0. (20)

Particular solutions of system (20) arec1(t) = 2/t2, c2(t) = c21t
3 + c22t

−2. They yield
an exact explicit solution of equation (1) obtainable by solving equation (10), which is
an ordinary differential equation in the variablex for the symmetries of second type, and
subsequent solution of equation (1) for the ‘constants’ of integration actually depending on
the variablet :

u(t, x) = x2

t2
+ c22x

t2
+ c21t

3x + c2
22

4t2
+ c21c22t

3

2
+ c2

21t
8

54
+ c23

t
+ c24t

2 (21)

where c2i are parameters. In the generic case, the family of solutions (21) consists of
solutions that are not invariant under any classical symmetry. But there are particular
values of the parameterscij making the corresponding solutions invariant. Precisely, there
are four such choices forcij :

solutions are invariant under the two-dimensional subalgebra generated by the vector
fieldsX4 andc22X2 + 2X3 if c21 = c23 = c24 = 0,

solutions are invariant underc22X2 + 2X3 −X4 if c21 = c23 = 0,
solutions are invariant underc22X2 + 2X3 + 2X4 if c21 = c24 = 0,
solutions are invariant under 5c22X2 + 10X3 − 8X4 if c23 = c24 = 0.
If we setb(t, x) = 0, then first two equations of (16) are satisfied and we arrive at an

infinitesimal conditional symmetry

v = ∂x + a(x)u∂u

with the function a(x) satisfying the ODEa′′ + 5aa′ + 2a3 = 0. Particular solution
a(x) = 2/x of the latter equation yields exact solutions of the nonlinear wave equation

u(t, x) = w(t)x2 with w(t) satisfyingẅ − 6w2 = 0 (22)

while particular solutiona(x) = 1/(2x) yields the exact solution

u(t, x) = c1t
√
x. (23)

Actually, solutions (22) and (23) are invariant under classical symmetry vector fieldsX3−X4

and 2X3 −X4, respectively.
Finally, if we take the second factora′ + 2a2 = 0 in (19), which implies the third

equation of (16), we arrive at an infinitesimal conditional symmetry

v = ∂x +
( u

2x
+ c(t)x

)
∂u (24)

where the functionc(t) satisfies the ODËc − 4c2 = 0. If the take the particular solution
c(t) = 3/(2t2), we obtain the exact solution

u(t, x) = x2

t2
+

( c1

t3/2
+ c2t

5/2
) √

x (25)

of equation (1). This solution is invariant under the classical infinitesimal symmetry
3X3 − 2X4 if c1 = 0, and it is invariant underX3 + 2X2 if c2 = 0.
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5. Infinitesimal conditional symmetries of first type

The last equation of system (13) contains only derivatives of the functionξ(t, x, u) with
respect to the variableu. It admits a classical infinitesimal scale symmetryv = 2u∂u+ξ∂ξ ,
so we can obtain the solutionξ = η(t, x)

√
u to that equation. After substituting this

expression for the functionξ into (13), we get thatη(t, x) = ±1. We did not succeed in
finding the general solution for the functionφ(t, x, u) in the considered case. Particular
solution φ(t, x, u) = c with c constant yields vector fieldsv = ∂t ± √

u∂x + c∂u. The
invariant surface condition takes the form

ut ±
√
uux = c. (26)

In the casec = 0 equations (26) are intermediate integrals of (1) meaning that each solution
of (26) is a solution of (1). If we consider the following Cauchy problem for equation (1):
u|t=0 = 8(x), ut |t=0 = 9(x), the solutions of (26) correspond to the initial data satisfying
the relations9(x) = ∓√

8(x)8′(x). For c 6= 0 the simulteneous solutions for (1), (26) are
u(t, x) = ct + c1.

In what follows, we restrict ourselves to infinitesimal conditional symmetries

v = ∂t + ξ(t, x)∂x + (f (t, x)u+ g(t, x))∂u (27)

with special dependence on the variableu admissible by equation (1). equations (13) imply
the following relations:

fx = 0 ξxx = 0 g = −f ξ2 + 2ξ2ξx + 2ξξt .

Hence,

f (t, x) = a(t) ξ(t, x) = b(t)x + c(t) (28)

and the problem of obtaining the infinitesimal conditional symmetries (27) reduces to solving
a system of 15 nonlinear ordinary differential equations of the third order for the unknown
functionsa(t), b(t), andc(t), which is a consequence of (13). Due to nonlinearity of this
system, its involutive form splits into several subsystems. As a rule, the latter cannot be
solved explicitly. Here is an example of such a subsystem:

a′ + a2 + 13ab + 24b2 = 0 b′ − 5b2 − 2ab = 0 c′ = 0.

The last equationc′ = 0 appears explicitly in all subsystems we obtained providedb(t) 6≡ 0.
It reflects the simple theoretic fact that ifv is a conditional symmetry, then the vector fields
obtained from it byx-translations are also conditional symmetries. So we can make a
conjecture thatc(t) is proportional tob(t) if b(t) 6≡ 0 and, moreover, in this case the
function c(t) may be set equal to zero with no loss of generality. Therefore, we will
consider the vector fields of conditional symmetries

v = ∂t + b(t)x∂x + (a(t)u+ x2(2b(t)3 + 2b(t)b′ − a(t)b2)∂u (29)

or, in the caseb(t) ≡ 0,

v = ∂t + c(t)∂x + (a(t)u+ 2c(t)c′(t)− a(t)c(t)2)∂u. (30)

We could continue our analysis by trying to obtain particular solutions of the subsystems.
Instead, we prefer a more systematic method of using the symmetry properties of
infinitesimal conditional symmetries with respect to the classical Lie symmetries.

Suppose thatX is an infinitesimal classical symmetry of equation (1). Denote by
exp(τX) the one-parameter transformation group on the spaceR3 of the points(t, x, u)
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associated withX. This group generates the induced actions exp(τX)∗ on the spaceC∞(R3)

of smooth functions and exp(τX)∗ on the spaceD(R3) of vector fields onR3:

exp(τX)∗(F )(t, x, u) = F ◦ exp(τX)(t, x, u)

exp(τX)∗(v) = exp(−τX)∗ ◦ v ◦ exp(τX)∗
(31)

where F(t, x, u) is a smooth function,v is a vector field onR3 considered as a first
order linear differential operator onC∞(R3). It was demonstrated in theorems 4 and 6
of [10] that if v is an infinitesimal conditional symmetry of a differential equation andX

is an infinitesimal classical symmetry of the same equation, then exp(αX)∗(v) is also an
infinitesimal symmetry.

The infinitesimal conditional symmetriesv invariant under the vector fieldX must
satisfy the commutation relation

[X,v] = λ(t, x, u)v. (32)

Similarly to invariant solutions of differential equations, the invariant vector fields of
conditional symmetries break up into conjugacy classes. Vector fields belonging to the
same class can be obtained from a particular vector field of the class by transformations
(31). Therefore, it is sufficient to obtain the vector fields invariant under the representatives
of the conjugacy classes of the Lie algebrag of the classical symmetries with respect to
inner automorphisms. The standard methods of obtaining conjugacy classes of subalgebras
under inner automorphisms [1] lead to the following list of representatives of conjugacy
classes (optimal subalgebras) of the Lie algebrag with the basis (8):

g1 = L(X1) g2 = L(X2) g3 = L(X1 −X2) g4 = L(X1 +X2)

g5 = L(X3) g6 = L(X4) g7 = L(X4 +X2) g8 = L(X4 −X3)

g9 = L(X4 −X3 +X1) g10 = L(X4 −X3 −X1)

g11 = L(ζX3 +X4) ζ 6= −1

(33)

whereL(Xi) denotes the linear span ofXi . It is evident that for the infinitesimal conditional
symmetries (29) invariant underX1 = ∂t the functionsa(t) andb(t) are constant while the
coefficients of a vector field (27) invariant underX2 = ∂x do not depend onx. Let us
find infinitesimal symmetries (29) invariant underX3 = t∂t + x∂x . After calculating the
commutator of vector fieldsX3 andv, we obtain the relation

[X3,v] = ∂t − tb′(t)x∂x + (x2(2ab2 − 4b3 + tb2a′ −
4bb′ + 2tabb′ − 6tb2b′ − 2tb′2 − 2tbb′′)− tua′)∂u. (34)

Comparing (29) and (34) we see that the functionsa(t) and b(t) must satisfy the ODEs
−tb′ = b, −ta′ = a, i.e. a(t) = c1/t , b(t) = c2/t with c1, c2 constant. Therefore, the
infinitesimal conditional symmetries invariant underX3 must look like

v = ∂t + c2x

t
∂x +

(
c1u

t
+ (2c3

2 − 2c2
2 − c1c

2
2)x

2

t3

)
∂u. (35)

Substituting (35) into determining equations (13), we arrive at the system of algebraic
equations for the parametersc1 and c2. The algebraic system admits five solutions given
along with the other invariant conditional symmetries in table 1.

Not all of subalgebras (33) are present in table 1. Some of them do not admit the
infinitesimal conditional symmetries at all, some admit only classical symmetries or the
same symmetries that are included as invariant under other subalgebras. Vector fieldv2,2

was obtained in [18],v2,3 andv5,2 in [12].
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Table 1. Invariant conditional symmetries.

g2 v2,1 = ∂t + c1t
2∂x + (

u
t

+ 3c2
1t

3
)
∂u

v2,2 = ∂t + c1t∂x + 2c2
1t∂u

v2,3 = ∂t + a(t)u∂u with a(t) satisfying the ODE
a′′ + aa′ − a3 = 0

g5, g6 v5,1 = t3∂t − xt2∂x + (2t2u− 6x2)∂u

v5,2 = t∂t + u∂u

v5,3 = t3∂t + xt2∂x + (x2 − t2u)∂u

v5,4 = 2t∂t + (5 − √
13)x∂x + 2(3 − √

13)u∂u
v5,5 = 2t∂t + (5 + √

13)x∂x + 2(3 + √
13)u∂u

6. Solutions invariant under the conditional symmetries of the first type

Solutions invariant under the classical and conditional symmetries satisfy the combined
system (1) and (10). The traditional method of solving this system consists of constructing
the functions invariant under the vector fieldv of infinitesimal symmetries by means of
first integrals ofv. Then such functions are substituted in the considered PDE yielding the
quotient equation in fewer independent variables. There exists a direct and pure algebraic
method for obtaining the quotient equations [19]. It is sufficient to consider the restriction
of system (1), (10) to the curveγ = {(t, x)|t = φ(α), x = ψ(α)} in the spaceR2 of
independent variablest, x. Under the assumption of transversality ofv to γ , the restriction
can be transformed so that one of the equations is an ODE in the variableα. As an
example, consider the vector fieldv2,2 and the curveγ determined by the equationt = 0.
From equation (10)

ut + c1tux = 2c2
1t

and its differential consequences it is possible to express the derivativeutt via the x-
derivatives ofu(t, x):

utt = 2c2
1 − c1ux + c2

1t
2uxx.

Substitiuting this expression into (1) and settingt = 0, we obtain the following ODE for
the restrictions of the solutions to the curveγ :

(uux)x = 2c2
1 − c1ux. (36)

Let u = f (x) be a solution of (36). Then the corresponding solution of equation (1) is
obtained with the help of a one-parameter transformation group

exp(τv)(t, x, u) = (t + τ, x + tτ + τ 2/2, u+ 2tτ + τ 2)

associated withv2,2. We only need to eliminate the parameterα from the equations

t − τ = 0 u− 2tτ + τ 2 = f (x − tτ + τ 2/2)

arriving at the solution

u(t, x) = f (x − t2/2)+ t2. (37)

Equation (36) admits the explicit solution (for simplicity, we setc1 = 1):

f (x) = −x + 22/3x2

(x3 + a3 + a3/2
√

2x + a
√

4x2 − 2xa + a2)1/3

+ (4x
3 + a3 + a3/2

√
2x + a

√
4x2 − 2xa + a2)1/3

22/3
(38)
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with a a parameter. Relations (37) and (38) give the exact explicit solution of equation (1)
obtained in [18]. It is invariant under the classical symmetries only ifa = 0.
The corresponding vector field of the classical infinitesimal symmetry isX4 − 2X3.
Unfortunately, in the cases when it is possible to obtain explicit solutions invariant under
the vector fields of table 1, they coincide with the solutions given by formulae (21), (23)
or (25).

7. Approximate numerical invariant solutions

The method of obtaining the quotient equations described above provides a good opportunity
for finding approximate, numerical invariant solutions of PDEs in two independent variables.
For this purpose, it is enough to obtain the numerical solutions of the quotient equation
and numerical solutions for the trajectories of the vector field of classical or conditional
symmetry. To begin with, consider the classical infinitesimal scale symmetryX3 =
t∂t + x∂x. If we take the curveγ = {(t, x)|t = 1}, the quotient equation written on
this curve looks like

((x2 − u)u′)′ = 0. (39)

The particular solutionu(x) = x2 of (39) yields the explicit unbounded solutionu(t, x) =
x2/t2 found in [17]. At the same time, equation (39) admits bounded solutions as the
numerical calculation shows.

Figure 1. Bounded solution invariant under scale symmetry.

The left picture of figure 1 is a plot of the numerical solution of the Cauchy problem
u(−1) = 0.1, u′(−1) = −0.01 for equation (39) on the interval−1 6 x 6 1 obtained by
means of ‘Mathematica’ function NDSolve. The right picture is a plot of the corresponding
invariant solution of the nonlinear wave equation (7) for 16 t 6 3. We again used NDSolve
for numerical integration of the equations for the trajectories of the vector fieldX3 starting
from the initial curve0 = {(t, x, u)|t = 1, u = u(1, x)}.

The method of obtaining numerical solutions described above can be applied to solutions
invariant under conditional symmetries. Consider the vector fieldv5,4 and the curve
γ = {(t, x)|t = 1}. The quotient equation onγ for invariant solutions looks like:

(19x2 − 5
√

13x2 − 2u)u′′ − 2u′2 + (10
√

13− 32)xu′ + (38− 10
√

13)u = 0. (40)

Figure 2 shows the graphics of the solution of quotient equation (40) and the invariant
solution corresponding to the Cauchy datau(1,−2) = 1, ux(1,−2) = 0. We must note
that the Cauchy data for equations (39) and (40) are set in such a way that the solutions
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lie far enough from the particular unbounded solutionsu = x2 of both equations. The
plots of figures 1 and 2 are obtained with the help of functions QuotientEquations and
InvarsolGraphics of program SYMMAN.

Figure 2. Bounded solution invariant underv5,4.

8. Conclusions

The nonclassical conditional symmetries allow us to essentially increase the number of exact
explicit solutions to the nonlinear wave equationutt = (uux)x . Although the conditional
symmetries of second class (14) yield more explicit solutions, the conditional symmetries
of first class (12) admit invariant solutions with the properties of interest for applications.
Therefore, the efforts to obtain particular solutions of the determining equations (13)
were not useless. The invariance property of the conditional infinitesimal symmetries
w.r.t. the classical Lie symmetries appears a useful tool for obtaining particular solutions
of the determining equations. Using capabilities of ‘Mathematica’ for reliable symbolic
computation, numerical solution of ODEs and graphical representation of approximate
invariant solutions was very helpful though much must be done regarding the methods
for solving the overdetermined systems of PDEs and the most informative plots of invariant
solutions.
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