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Abstract. In this paper we discuss the application of conditional symmetries for obtaining
exact and approximate solutions of the equatign= (uu,),. We propose to use the invariance
properties of the infinitesimal conditional symmetries with respect to the classical Lie symmetries
in order to explicitly solve the determining equations for the conditional symmetries. Exact
solutions invariant under the conditional symmetries are given by explicit formulae, approximate
solutions are calculated and presented in the graphical form by using ‘Mathematica’.

1. Introduction

To date, significant progress in application of symmetries to analysis of nonlinear differential
equations can be observed. The classical Lie symmetries of PDEs allow us to find explicit
solutions, conservation laws, linearizing substitutions of the Hopf—Cole type, etc [1-5].
Unfortunately, for a lot of important applications differential equations the classical Lie
symmetry groups are rather trivial including at most space and time translations and scale
transformations. This stimulates the efforts devoted to generalization of Lie’s original
concept of symmetry [11]. Nonclassical conditional symmetries considered in this article
are the classical symmetries of the new system of PDEs obtained by adding differential
constraints, sometimes called ‘side-conditions’, the original system of PDEs. Conditional
symmetries are associated with tadklund transformations, functionally invariant solutions,
and the ‘direct’ methods for explicit solution of PDEs [6].

The first approach to these symmetries was made by Bluman and Cole [7]. It consists
in augmenting the original PDE with invariant surface conditions, a system of first order
differential equations satisfied by all functions invariant under a certain vector field. The
latter is chosen as a classical infinitesimal symmetry for the augmented system. The basic
equations for conditional symmetries are similar to Lie’s determining equations except that
their number is less. That is why one rarely succeeds in obtaining all possible solutions
to the determining equations for conditional symmetries, especially in the case of second
order equations. As a rule, only particular solutions can be found, although many efforts are
devoted to solving this problem by using differentialdBner bases [8] and triangularization
algorithms [9].

We must mention here an interesting problem of interplaying the classical and
conditional symmetries. In fact, the determining equations for the conditional symmetries
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inherit the classical symmetries of the original PDEs [10] allowing one to use the classical
symmetries for systematic solution of nonclassical determining equations. In this paper, we
use this approach for the nonlinear wave equatign= (uu,),.

Obtaining the classical and nonclassical symmetries of differential equations follows
the algorithm involving prolongation of vector fields, restriction of functions and vector
fields to submanifolds, reduction of overdetermined systems to passive forms and so on.
Unfortunately, all these steps require simple but sometimes enormously large calculations.
It is not surprising that designing symmetry symbolic packages has drawn considerable
attention [13, 14]. We use a ‘Mathematica’ program called SYMMAN [15]. It provides a
wide spectrum of symbolic symmetry calculations such as obtaining determining equations
for classical and nonclassical symmetries and graphical representation of invariant solutions.

2. Physical phenomena described by the nonlinear wave equatiay; = (uuy),

The equation considered belongs to the family of nonlinear wave equations

Uy = (k(u)ux)x (1)
used by several authors for analysing nonlinear phenomena in continuous media. Zabusky
[16] proposed the equation

Uy = k(Ux)Uxx (2)
for describing the dynamics of a nonlinear string. equation (2) can be transformed to (1)

by differentiation w.r.t. the variable followed by a substitution, = u.
Consider the equations of one-dimensional gas dynamics

P (V=0 vtvi+p pe=0  p=plp). ®)
If we introdice the stream functiott (z, x) by the relations
p =Y —pv =1

and take the variablesand¢» as our new independent coordinates, we obtain equation (1)
for the functionu = p~1:

_ 9 (_dp
=y Ta )

Longitudinal wave propagation on a moving threadline under the assumption that the
transverse vibrations are small is described by the system of equations

A
Vi+VV,=—o, MA+Vi—AV, =0 o = Egr()) (4)
£0
proposed in [17]. System (4) can be reduced to the equation
e = 12 (' Wy, (5)

with u? = Eo/po. Finally, the equations of an electromagnetic transmission line
ir+ L, =0 vu+Ct, =0 C=C®v)
can be transformed to the equation
Uex = (LC(v)v,), (6)

for the voltage functiorv(z, x). In the cases when the functiori),) is quadratic or the
function C (v) is linear, equations (5) and (6) take the form

Uy = (Utty)y. @)
This equation is the subject of the present article.
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3. Determining equations for the infinitesimal conditional symmetries

Equation (7) admits four-dimensional Lie algelygraf its infinitesimal Lie symmetries [17]
with a basis:

X1 =0 Xo = 0, X3 =10; + x0y X4 =10; — 2ud,. (8)

The corresponding one-parameter groups are time and space translations and scale
transformations.

To discuss the conditional symmetries, we will treat equation (7) from a geometric point
of view as a hypersurfacg in the space/? of 2-jets of local functionsf (¢, x) defined on
the spacer? of independent variables x [2]. Let

v=r1(t,x,u)d +EC, x,u)d, + ¢, x,u)o, 9)

be a vector field on the spad®’ x R® with coordinates, x, andu. Then all functions
invariant under and only such functions satisfy a first order differential equation

Tur+&u, =¢ (10)

called the invariant surface conditian,.

Denote byE(Y ¢ J? the first prolongation of,. The systemED consists of (10) and
the equations obtained by and x-differentiation of (10). Denote also by® the second
prolongation ofv to the space/?.

Definition A vector fieldv such thatr? 4 £2 £ 0 is called an infinitesimal conditional
symmetry of equation (7) it is tangent to the intersectiai N E(V.

The infinitesimal criterion of the tangency takes the form
v (uy — (Wit) )] g = 0. (11)

Relation (11) is a generalization of the tangency condition for the classical Lie symmetries.
It yields the determining equations for the coefficients, ¢ of the vector fieldw.

It is well known that a vector field of conditional symmetries can be normalized by
dividing it by any of its nonvanishing coefficients. So vector fields of the conditional
symmetries can be split into two classes:

(1) vector fields withr = 0 and, consequently, with = 1,

(2) vector fields withr = 0, & #£ 0 and, consequently, with=0, & = 1.

We begin by considering the vector fields of the first class:

v=20;, + &, x,u)d, + ¢, x,u)d,. (12)

For vector fields (12) it is possible to eliminate the derivativesu,,, u,,, andu,, from

(11) by solving the systent N EY with respect to these derivatives and by substituting
the expressions obtained into (11). After elimination, equation (11) becomes a third-order
polynomial in the derivative:,. Setting the coefficients of the polynomial equal to zero
yields the determining equations for the functiohsand ¢. The program SYMMAN
calculates the coefficients of the prolongati@® of the vector field (12) onto the manifold

J? supplied with the coordinates, x, u, u,, uy, us;, usx, y, following the well known
formulae [1-3]. Then it calculates the applicationwf to the functionu,, — uf — Ullyy,
solves the systent N Ef}) w.r.t. the derivatives:;, u;;, u;c, andu,,, substitutes them into

the expressiow® (u,, — (uu,),), takes the coefficients of the powers:gf in the obtained
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expression and equates these coefficients to zero, which results in the following system of
four determining equations:

O°bu — 20%Edut — U Puu + D2 Puu — PEDx + 2Pty — 2uPduEy + 2uEPiE,
b UPPr — UE Py + Dy — 20EE,Dy — by — 20EPuE + 2up.E,
— 26¢E — 2updyu + 205Gy — uy + &%y =0

— 205, — Pk + APE>PuEL + 20%EET + 2uPEduu — 208 Puu + uPEu — GZE Eu
+ 2upy — 262, + QEE, + ME Dby — 2uEEL + 2Py, — 2uE Py,
— Uk + uEPE — 2uur + 2676,y — O + 2uduE, + 26°PuE
+ APEEE + 25E7 + 2uEd — 26, + 2udE, — 2087,
+ uf, — £%, =0

— ¢+ udy — E2Py + APEE, + 2uEPuE, — 263PuE — APEPEL + uPPuu — 2uE P
+ E%uu — 2uPEE + 20838 + 26°E, — QEEE — uEy,
+ 2uE%E,, + 25E — AEPEE — 2uE&, + 28%, =0

U, — E%6, — EE? + 26°67 — uE,, + 2uE%E,, — £, = 0.

For the vector fields of the second class
v=20,+ ¢, x,u)d, (14)

(13)

the determining equations

=0 =0 ¢yt — 2ud¢ —3p¢. — 2¢°p, =0
imply that

¢, x,u) =alx)u + b(t, x) (15)
where the functiona(x) andb(z, x) satisfy the overdetermined system:

by, — 3bb, — 2ab®> =0 by + 3ab, +5a’b + 4a®h = 0

16
a" + 5ad’ + 2a° = 0. (16)
The next two sections deal with solving systems (13) and (16).
4. Infinitesimal conditional symmetries of second type
The first two equations of (16) imply the compatibility condition
14ab? + 46a'bb, + 36a°bb, — 3Tab’a’ — 184°b* =0 (17)

obtained by cross-differentiation. The second equation of (16) is a differential consequence
of (17) provided the equation

(600 — 484%)b? — (51Quba’ + 348°b)b, — 26Tb%a’? — 23%?h%a’ — 70a*b?* = 0 (18)
is satisfied. After elimination ob, from (17) and (18) we come to the equation
b3(2a% + a')(302 70%° + 1616 526" + 2869 917%%4'%) = 0. (19)

If we take the third factor in (19) and the equation for the functigr) in (16), then that
overdetermined system for the functieix) admits the unique solutiom(x) = 0. Hence,
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in this caseb(t, x) = c1(t)x + c2(¢), where the functions;(t) andc,(¢) satisfy the system
of ODE:

é1—3c2=0 g — 3y = 0. (20)

Particular solutions of system (20) are(r) = 2/12, ca2(t) = c1t® + coot~2. They yield
an exact explicit solution of equation (1) obtainable by solving equation (10), which is
an ordinary differential equation in the variabtefor the symmetries of second type, and
subsequent solution of equation (1) for the ‘constants’ of integration actually depending on
the variabler:
x2 C22X C2 C21€22t3 C2 18

ut,x) = "5+ 5 Featn + B4+ S0 4
where ¢y; are parameters. In the generic case, the family of solutions (21) consists of
solutions that are not invariant under any classical symmetry. But there are particular
values of the parametets; making the corresponding solutions invariant. Precisely, there
are four such choices far;:

solutions are invariant under the two-dimensional subalgebra generated by the vector
fields X4 andcyoXo + 2X3 if cp1 = o3 =4 =0,

solutions are invariant undeg,Xo> + 2X3 — X4 if co1 = cp3 =0,

solutions are invariant undeg,X, + 2X3 + 2X4 if cp1 = ¢4 =0,

solutions are invariant undees X, + 10X3 — 8X4 if co3 = co4 = 0.

If we setb(z, x) = 0, then first two equations of (16) are satisfied and we arrive at an
infinitesimal conditional symmetry

c
+ ? + 6241‘2 (21)

v=0x +a(x)uou

with the functiona(x) satisfying the ODEa” + 5aa’ 4+ 24 = 0. Particular solution
a(x) = 2/x of the latter equation yields exact solutions of the nonlinear wave equation

u(t, x) = w(t)x? with w(r) satisfyingw — 6w? =0 (22)
while particular solutiorz(x) = 1/(2x) yields the exact solution
u(t, x) = cit/x. (23)

Actually, solutions (22) and (23) are invariant under classical symmetry vector Kgldx 4
and 23 — X4, respectively.

Finally, if we take the second facter + 22?> = 0 in (19), which implies the third
equation of (16), we arrive at an infinitesimal conditional symmetry

v=0x + (% + C(t)x) du (24)

where the functiore(r) satisfies the ODE — 4¢? = 0. If the take the particular solution
c(t) = 3/(2t?), we obtain the exact solution

x2 C
u(t,x) =5 + (tg—/lz +c2r%?) Vx (25)

of equation (1). This solution is invariant under the classical infinitesimal symmetry
3X3—2X4 if ¢ =0, and it is invariant undeks + 2X5 if ¢c; = 0.
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5. Infinitesimal conditional symmetries of first type

The last equation of system (13) contains only derivatives of the funétianx, «) with
respect to the variable. It admits a classical infinitesimal scale symmetry 2udu +&£09&,

so we can obtain the solutioh = n(¢, x)/u to that equation. After substituting this
expression for the functio into (13), we get thag (¢, x) = +£1. We did not succeed in
finding the general solution for the functiah(z, x, u) in the considered case. Particular
solution ¢ (¢, x, u) = ¢ with ¢ constant yields vector fields = 97 &+ /udx + cdu. The
invariant surface condition takes the form

u, + Juu, =c. (26)

In the case: = 0 equations (26) are intermediate integrals of (1) meaning that each solution
of (26) is a solution of (1). If we consider the following Cauchy problem for equation (1):
=g = ®(x), u,|,—0 = ¥(x), the solutions of (26) correspond to the initial data satisfying
the relations¥ (x) = F/®(x)®'(x). Forc # 0 the simulteneous solutions for (1), (26) are
u(t,x) =ct +ca.

In what follows, we restrict ourselves to infinitesimal conditional symmetries

v=20t+&(t, x)ox + (f(t, x)u+ g, x))ou (27)

with special dependence on the variabladmissible by equation (1). equations (13) imply
the following relations:

fi=0 £, =0 g = —fE2+ 262, + 28§,
Hence,

ft,x)=a() £(1,x) =b()x +c(r) (28)

and the problem of obtaining the infinitesimal conditional symmetries (27) reduces to solving
a system of 15 nonlinear ordinary differential equations of the third order for the unknown
functionsa(z), b(¢), andc(z), which is a consequence of (13). Due to nonlinearity of this
system, its involutive form splits into several subsystems. As a rule, the latter cannot be
solved explicitly. Here is an example of such a subsystem:

a +a?+13ab +24b° =0 b —5b%>—2ab =0 ¢ =0.

The last equation’ = 0 appears explicitly in all subsystems we obtained provigey = 0.

It reflects the simple theoretic fact thatifis a conditional symmetry, then the vector fields
obtained from it byx-translations are also conditional symmetries. So we can make a
conjecture thatc(z) is proportional tob(¢) if b(t) # 0 and, moreover, in this case the
function ¢(r) may be set equal to zero with no loss of generality. Therefore, we will
consider the vector fields of conditional symmetries

v = 3r + b(1)xdx + (a()u + x22b()° + 2b(1)b' — a(t)b®)du (29)
or, in the caseé(t) = 0,
v =0t + c(t)dx + (a(®)u + 2c(1)c (1) — a(t)c(t)?)du. (30)

We could continue our analysis by trying to obtain particular solutions of the subsystems.
Instead, we prefer a more systematic method of using the symmetry properties of
infinitesimal conditional symmetries with respect to the classical Lie symmetries.

Suppose thatX is an infinitesimal classical symmetry of equation (1). Denote by
exp(rX) the one-parameter transformation group on the sgitef the points(z, x, u)
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associated wittk . This group generates the induced actiong(eXp* on the spac€>(R3)
of smooth functions and expX), on the spaceD(R?) of vector fields onr3:

exp(t X)*(F)(t,x,u) = F oexp(t X)(, x, u)

. y (32)
exp(tX).(v) = exp(—tX)" o v o exp(r X)

where F(t, x,u) is a smooth functionp is a vector field onR® considered as a first
order linear differential operator 06> (R%). It was demonstrated in theorems 4 and 6
of [10] that if v is an infinitesimal conditional symmetry of a differential equation a&nhd
is an infinitesimal classical symmetry of the same equation, thefwéXp(v) is also an
infinitesimal symmetry.

The infinitesimal conditional symmetries invariant under the vector field must
satisfy the commutation relation

[X,v] =A@, x, u)v. (32)

Similarly to invariant solutions of differential equations, the invariant vector fields of
conditional symmetries break up into conjugacy classes. Vector fields belonging to the
same class can be obtained from a particular vector field of the class by transformations
(31). Therefore, it is sufficient to obtain the vector fields invariant under the representatives
of the conjugacy classes of the Lie algelgraf the classical symmetries with respect to
inner automorphisms. The standard methods of obtaining conjugacy classes of subalgebras
under inner automorphisms [1] lead to the following list of representatives of conjugacy
classes (optimal subalgebras) of the Lie alggbwith the basis (8):

g1 = L(X1) g2 = L(X2) g3 = L(X1— X2) g4 = L(X1+ X2)
g5 = L(X3) g6 = L(X4) g7 = L(X4+ X2) g8 = L(X4 — X3)
go= L(X4— X3+ Xy) g10= L(X4— X3 — X1)
g11 = L({ X3+ X4) ¢#-1
whereL (X;) denotes the linear span &f. It is evident that for the infinitesimal conditional
symmetries (29) invariant undéf; = 9, the functionsa(¢) andb(z) are constant while the
coefficients of a vector field (27) invariant und&, = ox do not depend onx. Let us
find infinitesimal symmetries (29) invariant und&g = 9, + xd,. After calculating the
commutator of vector field¥'; andv, we obtain the relation
[X3, v] = 31 — tb'(1)xdx + (x*(2ab? — 4b> + th%d’ —

4bb’ + 2tabb’ — 61b°b — 2tb'> — 2tbb") — tua’)du. (34)
Comparing (29) and (34) we see that the functiat® and b(¢) must satisfy the ODEs

—tb' = b, —td’ = a, i.e.a(t) = c1/t, b(t) = cp/t with ¢1, ¢, constant. Therefore, the
infinitesimal conditional symmetries invariant undég must look like

v= 01+ ox+ (C;” G 2653_ Clc%)Xz) ou.

(33)

(35)

Substituting (35) into determining equations (13), we arrive at the system of algebraic
equations for the parameters andc,. The algebraic system admits five solutions given
along with the other invariant conditional symmetries in table 1.

Not all of subalgebras (33) are present in table 1. Some of them do not admit the
infinitesimal conditional symmetries at all, some admit only classical symmetries or the
same symmetries that are included as invariant under other subalgebras. Vectos field
was obtained in [18]y, 3 andvs» in [12].
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Table 1. Invariant conditional symmetries.

g2 v 1 = ot + Cltzax + (E + 3C%l‘3) ou
V2,2 = 0t + c1tdx + 2c7tdu
v2,3 = 0t +a(t)udu with a(r) satisfying the ODE

a' +aa —a®=0
g5, 0 Vs1 =130t — xt29x + (2r%u — 6x2)du
vs52 =10t + udu
V53 = 1391 + x1%0x + (x2 — t2u)du
vs,4 = 200t + (5 — V/13)x0x + 2(3 — V1udu
vs5 = 23t + (5+ V/13)xdx + 2(3 + V1udu

6. Solutions invariant under the conditional symmetries of the first type

Solutions invariant under the classical and conditional symmetries satisfy the combined
system (1) and (10). The traditional method of solving this system consists of constructing
the functions invariant under the vector fieddof infinitesimal symmetries by means of
first integrals ofv. Then such functions are substituted in the considered PDE vyielding the
guotient equation in fewer independent variables. There exists a direct and pure algebraic
method for obtaining the quotient equations [19]. It is sufficient to consider the restriction
of system (1), (10) to the curve = {(r,x)|t = ¢(a),x = Y(«)} in the spaceR? of
independent variables x. Under the assumption of transversalitywofo y, the restriction

can be transformed so that one of the equations is an ODE in the vasabl&s an
example, consider the vector field , and the curvey determined by the equatian= 0.

From equation (10)

U; + crtu, = 2c§t

and its differential consequences it is possible to express the derivativda the x-
derivatives ofu(z, x):

Uy = ZCE — iy + c%tzu“.

Substitiuting this expression into (1) and setting= 0, we obtain the following ODE for
the restrictions of the solutions to the curye

(uuy), = ZC% — Clllyx. (36)

Let u = f(x) be a solution of (36). Then the corresponding solution of equation (1) is
obtained with the help of a one-parameter transformation group

exptv)(t, x,u) = (t + 7, x + 11+ 1%/2, u + 2tt 4+ %)

associated withv, 2. We only need to eliminate the parametefrom the equations
t—7=0 u—21t+1%= f(x — 11+ 1%/2)

arriving at the solution

u(t,x) = f(x —12/2) + 12 (37)
Equation (36) admits the explicit solution (for simplicity, we set= 1):
22/3,2

(x) =—x+
/ 3+ a® + a%2/2x + av/4x2 — 2xa + a?)1/3

(4x3 + a® + a®2/2x + av/4x? — 2xa + a?)'/3
+ 22/3

(38)
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with a a parameter. Relations (37) and (38) give the exact explicit solution of equation (1)
obtained in [18]. It is invariant under the classical symmetries onlya if= 0.

The corresponding vector field of the classical infinitesimal symmetnXjs— 2Xs.
Unfortunately, in the cases when it is possible to obtain explicit solutions invariant under
the vector fields of table 1, they coincide with the solutions given by formulae (21), (23)
or (25).

7. Approximate numerical invariant solutions

The method of obtaining the quotient equations described above provides a good opportunity
for finding approximate, numerical invariant solutions of PDEs in two independent variables.
For this purpose, it is enough to obtain the numerical solutions of the quotient equation
and numerical solutions for the trajectories of the vector field of classical or conditional
symmetry. To begin with, consider the classical infinitesimal scale symmeiry=

tdt + xox. If we take the curvey = {(z, x)|r = 1}, the quotient equation written on

this curve looks like

(x> =wu')y =0. (39)

The particular solutiom(x) = x? of (39) yields the explicit unbounded solutiatiz, x) =
x2/t? found in [17]. At the same time, equation (39) admits bounded solutions as the
numerical calculation shows.

u(l,x)

0.1

Figure 1. Bounded solution invariant under scale symmetry.

The left picture of figure 1 is a plot of the numerical solution of the Cauchy problem
u(—1) = 0.1, u’(-1) = —0.01 for equation (39) on the intervatl < x < 1 obtained by
means of ‘Mathematica’ function NDSolve. The right picture is a plot of the corresponding
invariant solution of the nonlinear wave equation (7) fa£* < 3. We again used NDSolve
for numerical integration of the equations for the trajectories of the vector Xiglstarting
from the initial curvel’ = {(¢, x, u)|t = 1, u = u(1, x)}.

The method of obtaining numerical solutions described above can be applied to solutions
invariant under conditional symmetries. Consider the vector figl]d and the curve
y = {(t, x)|t = 1}. The quotient equation op for invariant solutions looks like:

(192 — 5v/13¢% — 2u)u” — 2u'’? + (10v/13 — 32)xu’ + (38 — 10v/13)u = 0. (40)

Figure 2 shows the graphics of the solution of quotient equation (40) and the invariant
solution corresponding to the Cauchy datd, —2) = 1, u,(1, —2) = 0. We must note
that the Cauchy data for equations (39) and (40) are set in such a way that the solutions
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lie far enough from the particular unbounded solutions= x? of both equations. The
plots of figures 1 and 2 are obtained with the help of functions QuotientEquations and
InvarsolGraphics of program SYMMAN.

u(l,x)

1

Figure 2. Bounded solution invariant undes 4.

8. Conclusions

The nonclassical conditional symmetries allow us to essentially increase the number of exact
explicit solutions to the nonlinear wave equatien = (uu,),. Although the conditional
symmetries of second class (14) yield more explicit solutions, the conditional symmetries
of first class (12) admit invariant solutions with the properties of interest for applications.
Therefore, the efforts to obtain particular solutions of the determining equations (13)
were not useless. The invariance property of the conditional infinitesimal symmetries
w.r.t. the classical Lie symmetries appears a useful tool for obtaining particular solutions
of the determining equations. Using capabilities of ‘Mathematica’ for reliable symbolic
computation, numerical solution of ODEs and graphical representation of approximate
invariant solutions was very helpful though much must be done regarding the methods
for solving the overdetermined systems of PDEs and the most informative plots of invariant
solutions.
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